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Dynamical temperature for spin systems

Wira Bahari Nurdin* and Klaus-Dieter Schotte†

Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany
~Received 13 September 1999!

A transcription of Rugh’s geometrical approach to temperature is given for classical Heisenberg spin sys-
tems. For the simple case of a paramagnet with small and large numbers of spins we verify the approach. A
numerical check for long spin chains using spin dynamics shows its practicality.

PACS number~s!: 05.50.1q, 75.10.Hk, 75.40.Mg
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I. INTRODUCTION

Starting from a microcanonical ensemble the entropyS is
a function of energy. It is defined as the logarithm of t
number of different statesW that a physical system has wit
a given energyE, that is,S5 ln W with Boltzmann’s constan
set to unity. For a classical system with Hamilton functi
H, this number is proportional to the surface of const
energy in the phase space of canonical coordinates (qi ,pi).
More precisely, it is the number of points between infinite
mal neighboring surfaces given by the formula@1,2#

W5E d~E2H!)
i 51

N

dqi dpi5E
H5E

do

u¹W Hu
5E

H5E

doW •¹W H
u¹W Hu2

~1!

written in the form of a Gaussian surface integral. The dir
tion of the infinitesimal surface elementdoW normal to the
surface of constant energy coincides with the direction of
gradient¹W H. This quantity cannot in general be calculat
directly for a mechanical system, but its logarithmic deriv
tive with respect to energy can, as has been pointed ou
Rugh @3,4#. Using Gauss’s theorem the last integral can
written as

W~E!5E
H,E

¹W •
¹W H

u¹W Hu2
)
i 51

N

dqi dpi , ~2!

that is, as an integral over all phase space where the ener
lower thanE. The derivative with respect toE is again a
constant energy integral like Eq.~1! for W:

]W

]E
5E d~E2H!¹W •

¹W H
u¹W Hu2

)
i 51

N

dqi dpi . ~3!

The ratio is the inverse temperature according to 1T
5]S/]E,

]W

]E YW~E!5
1

T
, ~4!
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and defines a microcanonical average, so that the temp
ture is given by

1

T 5(
j

2N

] j

] j H
u( l] lHu2 and

1

T
5 K 1

TL . ~5!

In this formula the] j are the derivatives with respect to th
2N canonical variables (qi ,pi). Actually, the microcanonica
temperature is determined. The difference from the canon
temperature is most noticeable for small systems as has
discussed in greater detail recently by Bannur@5#, using very
small systems with chaotic dynamics as examples. With
argument given there one also arrives at Eq.~5!.

In this paper we show that a formula very similar in stru
ture exists to define the microcanonical temperature as
average for classical Heisenberg spins:

1

T 5(
j

@SW j3¹W j #•
@SW j3¹W j #H

u( lSW l3¹W lHu2
. ~6!

The sum is over all spinsSW j and ¹W j is the derivative with
respect to its components. Both are three-component vec
and @SW j3¹W j # is actually an angular momentum operator.

We will test this microcanonical spin temperature for fe
spins, in a magnetic field and also for many spins, wher
reproduces the usual canonical relation between energy
temperature. Further, we want to show its usefulness by t
ing it together with a molecular dynamics calculation f
longer spin chains. In the case that the system size is la
formula ~5! simplifies to

T 52
( j

NSẆ j
2

4H ~7!

with H5(Ji j SW i•SW j and the ‘‘velocity’’ of the spin SẆ j5

2SW j3¹W jH, in close analogy to the temperature used in m
lecular dynamics,T5(1/3N)( j pW j

2/m, where the summation
is over the momenta ofN particles moving in three-
dimensional space.

II. MICROCANONICAL TEMPERATURE
FOR CLASSICAL SPIN SYSTEMS

Instead of two canonical variablesq and p one has the
three components of the angular momentum or spin vectoSW .
3579 © 2000 The American Physical Society
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However, if these are restricted to always have the sa
length, in fact there are only two independent variables. W
Nambu’s notation@6# for the equation of motion as a Jac
bian one can deal with these peculiarities in a natural wa

]Si

]t
52

]~Si ,S,H!

]~S1,S2,S3!
, ~8!

where S5 1
2 @(S1)21(S2)21(S3)2# guarantees that the siz

of the angular momentum is conserved.S put into the last
equation instead ofSi gives zero for the time derivative ofS,
that is, the length ofSW is fixed. In a sense one has now tw
‘‘Hamiltonians,’’ the squared angular momentumS and the
energyH. The simplest example for a spin Hamiltonian
H52HW •SW with H the magnetic field. Since the energy
also a conserved quantity, the spin must be on a surfac
constant energy in three-dimensional spin space, a plane
the case of a spin in a magnetic field, and at the same tim
must be on the sphere with radiusS5uSW u. Therefore the orbit
is a circle in the case of a magnetic field. The Nambu fo
Eq. ~8! is, of course, nothing else but the standard equat

]SW /]t52SW 3¹W H with ¹H5S ]H
]S1

,
]H
]S2

,
]H
]S3D , ~9!

where the vector product guarantees spin and energy co

vation, sinceSW •SẆ 5¹W H•SẆ 50. For the case of a spin in
magnetic field this equation reduces to]SW /]t5SW 3HW .

The phase space is the surface of a sphere and forN spins
N spheres. In order to use statistical mechanics instea
‘‘dynamical’’ mechanics one has to check that phase spac
conserved. With

¹W •]SW /]t52¹W 3SW •¹W H52SW •¹W 3¹W H50, ~10!

the divergence of the flow in phase space generated by
dynamics of Eq.~9! is zero, since¹W 3¹W H50. In the case of
many spins this divergence disappears for each spin s
rately, as it does for each individual pair of canonical va
ables (qn ,pn) in common mechanical systems, that
]q̇n /]qn1] ṗn /]pn50. Thus a microcanonical temperatu
definition for a spin system withN spinsSi analogous to a
conventional mechanical system@see Eq.~1!# starts with

W5E d~E2H!)
i 51

N

d~S2Si !dSi
1dSi

2dSi
3

5E d~E2H!)
i 51

N

doi5SE
H5E

dO2N21

u( lSW l3¹W lHu
. ~11!

One has only to integrate over the surfaces of the sph
with Si5S indicated by*) idoi , that is a 2N-dimensional
integral. As in Eq.~1! the integral is restricted byH5E to
2N21 dimensions denoted by the ‘‘surface’’ eleme
dO2N21. For one spin the last term in Eq.~11! reduces to a
line integralS*H5Eds1 /uSW 13¹W 1Hu. The gradient of the en
ergy ¹W 1H projected on the surface of the sphe
e
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uSW 13¹W 1Hu/S has to appear in the denominator, since on
the part tangential to the surface of the sphere should
taken into account.

To proceed with two and more spins one has to write
last integral in Eq.~11! in an expanded form as

W5SE
H5E

( j@SW j3¹W jH#•dsW j) iÞ jdoi

( l uSW l3¹W lHu2

5SE
H,E

(
j

¹W j3
@SW j3¹W j #H

( l uSW l3¹W lHu2
•doW j)

iÞ j
doi , ~12!

where use has been made of@SW j3¹W jH# being parallel to the
line of constant energy, so that the numerator makes
integrand appear as a sum of line integrals amenable
Stokes integral formula. Since the vector character of
surface elementdoW j can be transferred to the spinSdoW j

5SW jdoj , the last integral can be written in a more transp
ent way as

W~E!5E
H,E

(
j

@SW j3¹W j #
@SW j3¹W j #H

( l uSW l3¹W lHu2 )
i

doi .

~13!

The integrand is the divergence of a vector field, as can
seen by changingSW j3¹W j • into ¹W j•SW j 3. It has also the
general form of the vector fieldXW used by Rugh@4# to define
microcanonical averages with the property that the sc
product of¹W H andXW should be equal to 1.

The volume of phase space with energyE is expressed in
Eq. ~13! as an integral over all phase space with ene
lower thanE. The derivative with respect to the energy
then

]W

]E
5E d~E2H!(

j
@SW j3¹W j #

@SW j3¹W j #H
( l uSW l3¹W lHu2 )

i
doi ,

~14!

again a constant energy integral likeW in Eq. ~11!. Since the
inverse temperature is 1/T5(]W/]E)/W, the function 1/T to
be averaged is the integrand of Eq.~14! given already in Eq.
~6!.

With LW j5@SW j3¹W j # and the summation from 1 toN the
integrand of Eq.~14! can be split into two terms,

1

T 5
( jLW j

2H
( l~LW lH!2

1(
j

~LW jH!LW j

1

( l~LW lH!2
, ~15!

where the last term for largeN is of the order 1/N, sinceH
connects the spinSW i only to neighboring spins and the dif
ferential operatorLj produces nonzero contributions only fo
l 5 j and for l close toj. A single sum in the numerator an
a double sum in the denominator gives then only a contri
tion that scales as}1/N. The meaning of Eq.~6! or Eq. ~15!
can best be clarified by simple examples discussed in
next section.
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III. PARAMAGNET AS AN EXAMPLE

With paramagnets it is easiest to test the spin tempera
formulas ~6! and ~15! derived in the preceding section. I
paramagnets as in ideal gases there is no interaction an
Hamiltonian is simplyHpM52H( i

NSi
3 , where H is the

magnetic field parallel toS3. One obtains

(
j

@SW j3¹W j #HpM52H$~S1
2 ,2S1

1 ,0!, . . . ,~SN
2 ,2SN

1 ,0!%,

~16!

which is a 3N-dimensional vector, and further

(
j

@SW j3¹W j #
2HpM52H(

j
Sj

3522HpM . ~17!

This could be inferred without explicit calculations, sinc
2@SW j3¹W j #

2 is the square of angular momentum opera
~used in quantum mechanics! and should givel ( l 11) with
l 51 if applied toSj

3 , sinceSj
3 is a component of a vecto

with eigenvalue 1. For the denominator of Eq.~6! one has to
square Eq. ~16!: u( j@SW j3¹W j #H pMu25H2( j@Sj

22(Sj
3)2#.

One obtains for the inverse temperature 1/T the first term of
the following equation:

1

TpM
5

22H pm

H2( l@S22~Sl
3!2#

2
2 ( jSj

3@S22~Sj
3!2#

Hu( l@S22~Sl
3!2#u2

. ~18!

The second term is obtained by applying in Eq.~15! LW j

5@SW j3¹W j # to the denominator, that is,LW j ( l@S22(Sl
3)2#5

22Sj
3(Sj

2 ,2Sj
1 ,0). Making use of Eq.~16! one gets finally

the numerator of the second term of Eq.~17!. For a large
number of spinsN, this second term becomes small since
numerator is proportional toN while the denominator is pro
portional toN2. Therefore it can be interpreted as a finite s
correction.

For small magnetic fields the first term of Eq.~18! alone
gives Curie’s susceptibility formula. The energy isHpM5
2HM with the magnetizationM5( iSi

3 . If the number of
spinsN is large then it is of advantage to take the average
the inverseT5^TpM& instead of^1/TpM&, that is, for the
temperature directly with

TpM'2
H2( i 51

N @S22~Si
3!2#

2HpM
, ~19!

where the second and smaller term in Eq.~17! has been
neglected. Using this form and for the average^(Si

3)2&
5 1

3 S2 which is valid for smallH, one obtains

M5N
S2

3T
H, ~20!

with the correct valueNS2/3 for Curie’s constant.
Using the canonical ensemble one can check Eq.~19! also

for larger H. With S35Scosu and h5HS/T the canonical
averagesI n5^(cosu)n& for n50,1,2 are I 05sinhh/h, I 1
5coshh/h2sinhh/h2, and I 22I 0522I 1 /h. Since the nu-
merator of Eq.~19! is, as before,HpM52HM and the
re

the

r

e

f

mean value of the denominator( i^S
22(Si

3)2&5NS2(I 0

2I 2)/I 0, one obtains witĥ TpM&5T for the magnetization
M, correctly,

M
N

5h
I 1

I 0
5cothh2

1

h
, ~208!

as a function ofh5HS/T.
For smallN Eq. ~18! should give the microcanonical tem

perature. For only one spin the total phase space is 4pS2,
which reduces for constant energyE52SHcosu to W1
52pS/H. The phase space at constant energy for one sp
independent of energy and therefore according to Eq.~4! the
inverse of the microcanonical temperature zero. Inde
1/T150 according to Eq.~18! if the sums are reduced to on
term.

For two spins the phase space at constant energy~to sim-
plify the notationS51) is

W25E E dz1dz2d~z11z21E/H !

5~22uE/Hu! for uE/Hu,2, ~21!

wherez1/25S1/2
3 , the component ofSW 1/2 in the magnetic field

direction. The limits forz1 are 21,z1,1 and sincez25
2z12E/H the constraint forz2 is 21,z2,12E/H for
E/H.0. With Eq. ~4! the temperature is then

T52sgn~E/H !~22uE/Hu!. ~22!

To compare with Eq.~18! rewritten for two spins withS1/2
3

5z1/2 andS251,

1

T2
5

2

H S z11z2

22z1
22z2

2
2

z1~12z1
2!1z2~12z2

2!

22z1
22z2

2 D
5

2

H

~z11z2!~12z1z2!

22z1
22z2

2
, ~23!

again one has to integrate to determine the microcanon
average. To this end one putsh5z11z2 and z5z12z2 so
that dz1dz25dzdh/2. With e5E/H one gets

E
21

1 E
21

1

dz1dz2d~z11z21e!/T2

522eE
ueu22

22ueu
dz

42e21z2

~42e22z2!252sgn~e!, ~24!

because withh5z11z252e the second variablez5z1
2z2 is limited to the interval 22ueu.z.221ueu. For the
averagê 1/T2&51/T one has to divide the last result byW2
given by Eq.~21! so that in fact the microcanonical temper
ture ~22! is found.

IV. SPIN CHAIN

The Hamiltonian for the Heisenberg model isHH

5( i j8 Ji j SW i•SW j where the summation is over spin pairs$ i , j %
connected by the exchange interaction. The correspon
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expression for the temperature according to Eq.~15! is

1

TH
5

24H
( l~LW lH!2

1
2( i j8 Ji j $SW i•SW j~LiH2LjH!21~SW i•LW jH!~SW j•LW iH!%

( l~LW lH!2

~25!

with LW j5@SW i3¹W i #. The derivation is similar to the one fo
the paramagnet@Eq. ~18!# in the last section. The secon
term is rather complicated; however, for large spin system
is sufficient to consider only the first term and its inverse

TH52(
l

~LW lH!2/~4H!, ~26!

which is close to the kinetic temperature used in molecu
dynamics, when written in the form~7!. We used this for-
mula to calculate the temperature by integrating the equa
of motion for a spin chain of lengthN,

]SW j /]t52SW j3¹W jHch with Hch5J (
j 51

N21

SW j•SW j 11 ,

~27!

and compared it to the energy relation~see Fisher@7#!

E5~12N!@J coth~J/T!2T# ~28!

~see Fig. 1!. The energyE is fixed and one finds numericall
the temperatureT5^TH& using Eq.~26! whereas in the ca
nonical relationT is fixed and the energy is determined as
average. Since in the integration process]SW j /]t52LW JHH is
calculated anyway, the additional determination of the te
perature is easy.

There is one difficulty hidden in the dynamical approa
to temperature, since in addition to the energy additio
conserved quantities could appear@8#. For the case of the
isotropic Heisenberg model the total spin( iSW i is a conserved
quantity. With a microcanonical Monte Carlo approach su
a problem could be circumvented. Here we have taken
initial spin configuration with total spin zero. Pairs of spi
oriented in opposite directions which have an angle6a to
the z direction allow the energy variation used in the sim
lations. For the temperature average plotted in the inse
Fig. 1 all time steps up to the timet are taken.
-

it

r

n

-

l

h
n

-
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V. CONCLUDING REMARKS

We have shown that Rugh’s microcanonical temperat
definition can be carried over to classical spin systems
we think it could actually be used there in molecular dyna
ics simulations. The same recipe could also be applied
simulations where the magnetization instead of the energ
constant. With the determination (]S/]M )T similar to
(]S/]E)M discussed, one could make use of the thermo
namic relationH5(]E/]M )T2T(]S/]M )T and calculate
the magnetic fieldH. There are other possibilities for gene
alizations, like higher derivatives with respect to energ
leading in the next step to the specific heat~see Rugh@4#!. In
a microcanonical simulation the fluctuations of thez compo-
nent of the energydEuu defined byH H

uu 5( i j8 Ji j Si
3Sj

3 would
determine the specific heatC, making use of the connectio
between canonical and microcanonical fluctuations. A f
mula of the type found by Lebowitz, Percus, and Verlet@9# is
for an isotropic Heisenberg system̂(dEuu)

2&E5 2
9 T2C @10#,

where the subscriptE indicates the microcanonical averag
with constant total energy.
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FIG. 1. Relation between temperature and energy for a chai
N532 spins: circles are averages according to Eq.~26!, solid line to
compare with Eq.~28!, andJ51. The inset shows the fluctuation
of the temperature average as a function of time for different en
gies.
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