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Dynamical temperature for spin systems
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A transcription of Rugh’s geometrical approach to temperature is given for classical Heisenberg spin sys-
tems. For the simple case of a paramagnet with small and large numbers of spins we verify the approach. A
numerical check for long spin chains using spin dynamics shows its practicality.

PACS numbgs): 05.50:+q, 75.10.Hk, 75.40.Mg

I. INTRODUCTION and defines a microcanonical average, so that the tempera-

Starting from a microcanonical ensemble the entrSpy ture is given by

a function of energy. It is defined as the logarithm of the 1 2N oM 1 1
number of different stated/ that a physical system has with — =2 diesaz an <_> (5)
a given energ¥, that is,S=In W with Boltzmann’s constant T 7 = 5IH| T \7

set to unity. For a classical system with Hamilton function

‘H, this number is proportional to the surface of constan2N ical variabl A V. the mi ical
energy in the phase space of canonical coordinale®/). canonlca_vzna esq ,é)i)'lih c(tjqf? y, the ;nlcro%anonlca_ |
More precisely, it is the number of points between infinitesi-IEMPerature is determined. The difference from the canonica

: ; : temperature is most noticeable for small systems as has been
mal neighboring surfaces given by the form i ) . .
g g g y (2] discussed in greater detail recently by Banf]r using very
N . small systems with chaotic dynamics as examples. With the
do do-VH i i
w= | sE-m]] dg dp= _ argument given there one also arrives at &).
o H=E|€H| H=E |€H|2 In this paper we show that a formula very similar in struc-
(1) ture exists to define the microcanonical temperature as an
average for classical Heisenberg spins:
written in the form of a Gaussian surface integral. The direc- .
[S;XV;IH

tion of the infinitesimal surface elemedb normal to the _2 [S V] — (6)
surface of constant energy coincides with the direction of the |E|S, X V|H|2

gradlentVH This quantity cannot in general be calculated

directly for a mechanical system, but its logarithmic deriva-The sum is over all spin§; and V; is the derivative with

tive with respect to energy can, as has been pom[ed out Ugespect to its components. Both are three-component vectors
Rugh[3,4]. Using Gauss’s theorem the last integral can bmnd[éjxﬁj] is actually an angular momentum operator.

{n this formula thed; are the derivatives with respect to the

written as We will test this microcanonical spin temperature for few
spins, in a magnetic field and also for many spins, where it
. VH reproduces the usual canonical relation between energy and
W(E)= f V- H dg; dp;, (2)  temperature. Further, we want to show its usefulness by test-
HeE  |VH|?i= ing it together with a molecular dynamics calculation for

longer spin chains. In the case that the system size is large,
that is, as an integral over all phase space where the energyfrmula (5) simplifies to
lower thanE. The derivative with respect t& is again a
constant energy integral like E¢L) for W: 2N§2

T=="p @

oW
- f&(E H)v 2H gdp. - |
| with H=%J;;S-§; and the “velocity” of the spinS;=
S ><V H, in close analogy to the temperature used in mo-
The ratio is the inverse temperature according td@ 1/ Iecular dynam|csT (1/3N)E,p]/m where the summation
= JS/JE, is over the momenta ofN particles moving in three-
dimensional space.

1
/ W(E)= =, (4)
E T Il. MICROCANONICAL TEMPERATURE
FOR CLASSICAL SPIN SYSTEMS
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However, if these are restricted to always have the sam 1><V1H|/S has to appear in the denominator, since only

length, in fact there are only two independent variables. With, o part tangential to the surface of the sphere should be
Nambu’s notatiori6] for the equation of motion as a Jaco- taken into account.

bian one can deal with these peculiarities in a natural way, proceed with two and more spins one has to write the

. . last integral in Eq(11) in an expanded form as
S IS, SH)

- 8
o yshS, S ®

w-s| -
_ 2
where 8= 1[(SY)?+(S?)2+(S%)?] guarantees that the size eE [ SXViH|
of the angular momentum is conservekiput into the last . [SxVIH
equation instead d® gives zero for the time derivative o, =SJ j
H<E]

that is, the Iength of is fixed. In a sense one has now two
“Hamiltonians,” the squared angular momentusnand the
energy. The simplest example for a spin Hamiltonian is where use has been made] &fx V; ] being parallel to the
H=—H-3 with H the magnetic field. Since the energy is | line of constant energy, so that the numerator makes the
also a conserved quantity, the spin must be on a surface tegranq appear as a sum of line integrals amenable to
constant energy in three-dimensional spin space, a plane f okes integral formula. Since the vector character of the
the case of a spin in a magnetic field, and at the same time Rurface elementio; can be transferred to the spBdq

must be on the sphere with radiSs: |§]. Therefore the orbit = S;do;, the last integral can be written in a more transpar-
is a circle in the case of a magnetic field. The Nambu formgnt way as

Eq. (8) is, of course, nothing else but the standard equation,

s = 5 do;, (12
3, 1§ XV H|? EIJ o 12

[ j j]H _
JH IH aH) © W(E)= f E[S —|IS1 V.H|2H do;.

9S/ot=—SXVH with VH= (
ISt 92 93

(13

where the vector product guarantees spin and energy consérhe integrand is the divergence of a vector field, as can be

vation, sinceS- S VH-S=0. For the case of a spin in a seen by chang|n§JXV - into V S X. It has also the

magnetic field this equation reducesds/ot=Sx H. general form of the vector field used by Rugh4] to define
The phase space is the surface of a sphere andl &gins microcanonical averages with the property that the scalar
N spheres. In order to use statistical mechanics instead @Foduct of VH andX should be equal to 1.

“dynamical” mechanics one has to check that phase space |s The volume of phase space with enefgys expressed in
conserved. With Eqg. (13) as an integral over all phase space with energy

lower thanE. The derivative with respect to the energy is
V.08dt=—-VxS VH=-8VxVH=0, (10 then

the dlvgrgence of t.he flow |.n prlas% space generated by the dW f S(E— H)E [S Y ] [ y X ViIH H do; |
dynamics of Eq(9) is zero, sinc&/ X VH=0. In the case of JE s |3 V|H|2
many spins this divergence disappears for each spin sepa- (14)
rately, as it does for each individual pair of canonical vari-
ables @,.,p,) in common mechanical systems, that is, again a constant energy integral [®éin Eq. (11). Since the
39,190, + dp,/dp,=0. Thus a microcanonical temperature inverse temperature is T+ (9W/JE)/W, the function 17to
definition for a spin system witl spinsS; analogous to a be averaged is the integrand of Ef4) given already in Eq.
conventional mechanical systdisee Eq.(1)] starts with (6).

With £;=[S;xV;] and the summation from 1 tii the
integrand of Eq(14) can be split into two terms,

N
sz 5(E—H)_H1 8(S-S)dSdSdS
1 3L

N dOon-1 T
j S(E H)iLll do SJ S ExTH (11 I( 'H

Em), (15)

)2’

where the last term for largd is of the order IN, sinceH

Tonnects the spiti only to neighboring spins and the dif-
ferential operatol; produces nonzero contributions only for

. . o . I=j and forl close toj. A single sum in the numerator and
2N-1 dlmenS|ons_ denoted by t_he surface” element a double sum in the denominator gives then only a contribu-
dOgy-1. For one spin the last term in EGLD) reduces t0 @ o, yhat scales as LIN. The meaning of Eq(6) or Eq.(15)

line integralS/ - eds,/|S;x V H|. The gradient of the en- can best be clarified by simple examples discussed in the
ergy V,H projected on the surface of the spherenext section.

One has only to integrate over the surfaces of the spher
with S;=S indicated by[Il;do;, that is a 2N-dimensional
integral. As in Eq.(1) the integral is restricted b{=E to
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Ill. PARAMAGNET AS AN EXAMPLE mean value of the denominatc®;(S?—(S%)2)=NS(I,

With paramagnets it is easiest to test the spin temperatur/%‘I 2)c/<|)(r)r,e?:3§ obtains with(Z,y)=T for the magnetization

formulas (6) and (15) derived in the preceding section. In
paramagnets as in ideal gases there is no interaction and the M
Hamiltonian is simply H,y=—H=]S’, where H is the i
magnetic field parallel t&>. One obtains N

B 1
—h—=cothh— =, (20))
I h

as a function oh=HS/T.
> [éjxﬁj]HpMz —H{(S$?,-S1,0), ...,(S4,—Sy,0)}, For smallN Eq. (18) should give the microcanonical tem-
i perature. For only one spin the total phase spaceniS?*4
(160 which reduces for constant enerdy=—SHcosé to W,
=2aS/H. The phase space at constant energy for one spin is
independent of energy and therefore according to(&qthe
o inverse of the microcanonical temperature zero. Indeed
2 [S XVj]ZHpM= ZHZ Sj3= —2Hp\m - a7 1/7;=0 according to Eq(18) if the sums are reduced to one
! J term.
For two spins the phase space at constant engogsim-
plify the notationS=1) is

which is a AN-dimensional vector, and further

This could be inferred without explicit calculations, since
—[§jxﬁj]2 is the square of angular momentum operator

(used in quantum mechanjcand should give (I +1) with

|=1 if applied toS’, sinceS’ is a component of a vector WZZJ f dz,dz,6(z,+2,+ E/H)

with eigenvalue 1. For the denominator of E6) one has to

square Eq. (16): [S,[§XV,]H pul2=H23,[S2— (7], =(2-|E/MH]) for |E/H|<2, @D

One obtains for the inverse temperatur@ thie first term of

the following equation: wherezy,,= Sf,z, the component oﬁl,z in the magnetic field

direction. The limits forz, are —1<z;<1 and sincez,=
_ 2 3 SR (S3)2 —-z,—E/H _the constraint forz, is —1_<22<1—E/H for
= 2H pm - iSil (S)°] (18y  E/H>0. With Eq.(4) the temperature is then

1
Tom HZ[S2—($H?] H|3Z[S—(SH2

T=—sgnE/H)(2—|E/H]). (22
The second term is obtained by applying in Ed5) Zj
=[S, xV;] to the denominator, that is(; %[ S?—(S?)?]=
—ZSJ-3(SJ-2,—SJ-1 ,0). Making use of Eq(16) one gets finally
the numerator of the second term of Ed7). For a large

To compare with Eq(18) rewritten for two spins withs,,
=z,,andS?=1,

2 2
number of spindN, this second term becomes small since the iz E 4tz _21(1_21)+22(1_22)
numerator is proportional tb while the denominator is pro- T, H\2-22-27 2-722-72
portional toN?. Therefore it can be interpreted as a finite size
correction. (z1+25)(1~2125)

2
For small magnetic fields the first term of E4.8) alone H ' (23
gives Curie’s susceptibility formula. The energy 7§,y =
—HM with the magnetizatioW:Ei§. If the number of again one has to integrate to determine the microcanonical
spinsN is large then it is of advantage to take the average ofiverage. To this end one puis=z;+2z, and {=2z,—2, SO
the inverseT=(7,y) instead of(1/7,y), that is, for the thatdz;dz,=d{d»/2. With e=E/H one gets

temperature directly with

1 (1
o Hin’\‘zl[Sz—(S?)z] 9 fﬁlfildzldzzﬁ(zﬁzfr €)lT,
M 2Hpm ’

2_ 2
2—-721—175

2-ld 44—+
where the second and smaller term in E#j7) has been - Zef d§(4—52—52)2_ sgnie), (24
neglected. Using this form and for the avera¢(s’)?)
=132 which is valid for smallH, one obtains because withnp=z;+2z,=—€ the second variableg=2z;
— 2, is limited to the interval 2-|e|>{>—2+|¢|. For the
average(1/7,)=1/T one has to divide the last result by,
given by Eq.(21) so that in fact the microcanonical tempera-
ture (22) is found.

€l—2

SZ

M=N3—TH, (20

with the correct valueNS%/3 for Curie’s constant.

Using the canonical ensemble one can check(Eg).also IV. SPIN CHAIN
for larger H. With S;=Scos# andh=HS/T the canonical o _
averagesl,,=((cosf)") for n=0,1,2 arely=sinhh/h, 1, The Hamiltonian for the Heisenberg model Ky

=coshivh—sinhh/h?, and I,—1=—21,/h. Since the nu- =3/J;S-S; where the summation is over spin pafisj}
merator of Eq.(19) is, as before,H,y=—HM and the connected by the exchange interaction. The corresponding
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expression for the temperature according to @) is 0 . - -

1 —4H

—_—= 02 + 4
T 3(LH)?

+2z(j3ij{§ -S(LH— LH)+ (S LyH)(S- LiH)}
3\(LiH)?

(25

Energy E/(N-1)
Temperature T

with Ej=[§X§i]. The derivation is similar to the one for
the paramagnefEq. (18)] in the last section. The second

term is rather complicated; however, for large spin systems it %00 1000 . 10000 100000
is sufficient to consider only the first term and its inverse Time t
_1 1 1 1
- 0 1 2 3 4
Ty=— Z (LiH) 2/(47'[)1 (26) Temperature T

FIG. 1. Relation between temperature and energy for a chain of
which is close to the kinetic temperature used in moleculaN= 32 spins: circles are averages according to(26), solid line to

dynamics, when written in the forrtv). We used this for- compare with Eq(28), andJ=1. The inset shows the fluctuations
mula to calculate the temperature by integrating the equationf the temperature average as a function of time for different ener-
of motion for a spin chain of lengtN, gies.

N—-1 V. CONCLUDING REMARKS

95;/9t= =S5 X ViHep with Hch:‘]jzl S Sj+1s We have shown that Rugh’s microcanonical temperature

(27) definition can be carried over to classical spin systems and
we think it could actually be used there in molecular dynam-

and compared it to the energy relatitsee Fishef7]) ics simulations. The same recipe could also be applied to
simulations where the magnetization instead of the energy is
E=(1-N)[JcothJ/T)—-T] (2g)  constant. With the determinationd®/dM) similar to

(0SI9E) ) discussed, one could make use of the thermody-

(see Fig. 1 The energ)E is fixed and one finds numerically Namic relationH=(JE/oM)r—T(4S/dM)y and calculate
the temperaturd =(7;,) using Eq.(26) whereas in the ca- the magnetic fieldd. There are other possibilities for gener-
nonical relatiorT is fixed and the energy is determined as an/izations, like higher derivatives with respect to energy,
average. Since in the integration proca§s/dt= — £Hy, is leading in the next step to the specific heste Rugli4]). In
calculated anyway, the additional determination of the temS microcanonical 5|mulat|qn the qucltluiltlo,ns of theompo-
perature is easy nent of the energy’E|| defined byH},==/,J;;S’S’ would
There is one difficulty hidden in the dynamical approachcIetermlne the specific he@} making use of the connection

to temperature, since in addition to the energy additionaﬁ]eme;r:h(inog'?gijr?(;]g ngzﬁ?zor;(;?éjg’c;ﬁgtsg[%é for-
conserved quantities could appd&]. For the case of the yp y ! '

, T - for an isotropic Heisenberg systefdE )%= 5T>C [10],
isotropic Heisenberg model the total SPIfS, is a conserved  \yhere the subscrip indicates the microcanonical average
quantity. With a microcanonical Monte Carlo approach suchiih constant total energy.

a problem could be circumvented. Here we have taken an
initial spin configuration with total spin zero. Pairs of spins
oriented in opposite directions which have an antle to
the z direction allow the energy variation used in the simu-  We thank Peter Ner for pointing out Nambu’s formula-
lations. For the temperature average plotted in the inset afon of mechanics with three canonical variables. W.B.N.
Fig. 1 all time steps up to the tinteare taken. thanks DAAD for financial support.
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